
Software Improvements © 2005 1

Software Engineering Practices that Count
A case study of the development of the ACT electronic voting and counting system: its successes
and lessons learned

By Clive Boughton

The scene
Imagine being presented with the “opportunity” to undertake a software development project that:

• has an immutable deadline (seven months out),
• is most likely under-budgeted,
• possesses functionality that cannot be easily reduced,
• may have serious political and reputational consequences if it fails,
• must deliver a product that operates with a very high degree of integrity, and
• can be cancelled at any time by the customer.

Software Improvements faced this situation when the prime contractor (Linuxcare) of the successful joint bid
for the Australian Capital Territory (ACT) Electoral Commission’s Electronic Voting and Vote Counting
System became an unfortunate victim of a take-over during contract negotiations.

The Software Improvements eVACS® Project Team then formed used common sense Software Engineering
decisions and practices to turn a very risky project into an unmitigated success. The clear message I wish to
convey to all other small, software development companies is:

Don’t go with the status quo and forsake professional practices, especially when the going gets
tough!

The project in brief
No detailed description of eVACS® is provided here. Available from Elections ACT (the Customer) is
i n f o r m a t i o n o n t h e A C T L e g i s l a t i v e A s s e m b l y e l e c t i o n s y s t e m1

(http://www.elections.act.gov.au/Elecvote.html) together with specifics about the Hare-Clark proportional
representation scheme that is used to count voters’ preferences2 (http://www.elections.act.gov.au/hare.html).
A post-project report3 (include website details and link) is available on the Software Improvements website.

The broad requirement for the eVACS® project was to construct a trial system on standard PCs that could
both collect and count votes electronically with no less security, no impingement of voters’ rights, and no
less anonymity than is available with the current paper-based system. Internet solutions were not acceptable
because of the possibility of voter coercion and system tampering.

The project was to start on March 1, 2001 and be completed by the beginning of September 2001 for full
“customer” testing and preparation for pre-poll voting that began on September 30. Election day was
October 20, 2001.

The Software Improvements Team was responsible for the construction of the software, whilst InTact (the
ACT Government IT provider) provided the hardware.

The essence of the solution implemented by Software Improvements is available in the post-election report
mentioned earlier.

Software Improvements © 2005 2

Why do projects succeed or fail?
There is rarely just one specific reason for project success or failure. Also, what might work well for one
project may not work at all for another. Although the Standish Group CHAOS report of 19964

(http://www.standishgroup.com/sample_research/chaos_1994_1.php) paints a sad picture of the software
industry at the big end of town, it is interesting to take a look at the identified reasons for both success and
failure of such software development projects. Success means within budget, schedule and all agreed
requirements are implemented and accepted by the customer. The top ten reasons given for successful and
failed projects include (in priority order):

Reasons for success Reasons for failure

User involvement Lack of user input

Management support Incomplete requirements & specifications

Clear statement of requirements Changing requirements & specifications

Proper planning Lack of executive support

Realistic expectations Technology incompetence

Smaller milestones Lack of resources

Competent staff Unrealistic expectations

Ownership Unclear objectives

Clear vision and objectives Unrealistic time frames

Hard working and focussed staff New technology

Do these same reasons for success or failure apply to very small projects? I think they do. On
thinking about the various decisions and actions that were taken by the Software Improvements
Team on the eVACS® project, and the reasons for them, I can see definite parallels. Fortuitous? I
don’t think so. Most of the reasons for success and failure are intuitive, or common-sense, and it
doesn’t require rocket science to act to prevent a reason for failure becoming a reality. However, a
software development company or team cannot act confidently if the overall software engineering
knowledge base within the company or team does not extend beyond coding. Continuous learning
is required.

What decisions or actions, lead to success?
When Linuxcare dropped out of the picture, negotiations started with Software Improvements, and
so, the success-oriented decisions began to be made.

The following sections constitute a relatively brief synopsis of the various decisions and actions,
and the reasons behind them. Each section (negotiation, system analysis, software analysis,
software design, software coding and software testing) represents a project phase describing the
main decisions and actions that affected the success of the project. All except the negotiation phase
were determined from the planning that occurred during negotiations.

Software Improvements © 2005 3

Negotiation
Decision/action Reason(s)

Construct a project management plan (PMP). • No proper plan existed.
• Some objectives were vague.
• Some expectations of Customer were unrealistic

given budget and time.
• Confirm project feasibility (or not).
• Identify and treat risks.

Construct a quality management plan (QMP). • eVACS had to operate with high integrity.

Build a closer working relationship with
customer.

• Discover Customer’s level of ownership.
• Enhance the ‘team’.

The PMP and QMP together described the full scope of the system and software-related activities of
the eVACS® project. The project was indeed feasible, even with a built in 6 week delay caused by
extended negotiations of the contract. The project life cycle was a simple waterfall model the
phases for which head up the following sections. The PMP included a basic software configuration
management plan (SCMP) and a simple software change control plan (SCCP). The deliverables
included, system and software requirements specifications, software design specifications, source
code, acceptance tests and (of course) the fully installable system with instructions. The schedule
for software delivery was based on an average estimate of 20,000 source lines of code to be
developed in a ‘C’-like language. All known risks were identified. Extra specific resources were
required.

Now the Software Improvements Team and the Customer had something with which to gauge
progress.

It was during this phase that Software Improvements came to know the Customer better and vice
versa. A reference group, including politicians, previous electoral commissioners, typical users and
a representative of the visually impaired, had been set up by the ACT Electoral Commission. That
group posed questions and raised issues. The Commissioner could cancel the project at any time if
there were too much negative press or political backlash. The Customer thus set the criteria for
success. This input further helped to define the process for achieving a successful outcome.

System Analysis
Decision or action Reason(s)

Construct an eVACS system specification
(SS).

• Requirements as stated in the Tender
document had changed.

• Hardware components proposed in the
tender response were not finalised.

• InTact needed to know all hardware
specifications as soon as possible.

• identify who had ownership of what.

Software Improvements © 2005 4

The SS represented an edited version of the relevant portions of the original tender document. It
now contained clear system objectives, descriptions of all required hardware, and overall system
functions that needed to be developed in software. It included the provision of a prototype for the
voting and counting parts of the system.

At least now all parties involved in constructing eVACS® were clear on overall system
requirements. Some ownership was beginning to occur.

Software Analysis
Decision or action Reason(s)

Nail down software requirements. • Some requirements were vague.
• Requirements didn’t seem complete.
• The customer had not sanctioned fully the

proposals in the tender response.
• Setting and confirming expectations.

Construct an eVACS software specification in
the form of a model.

• Capture requirements more formally.
• A model provides an easy way to identify the

affects of proposed changes.

Identify separation of concerns within the
model.

• Smaller project milestones.
• Less time between deliveries.

Provide a protype. • Show customer and users the nature of computer
interfaces.

• Obtain user involvement.

It was no surprise to hear the Customer express great pleasure and relief when approached by
Software Improvements to discuss the requirements. A full scenario analysis was performed by
identifying required actions of the system as produced by expected stimuli (events). The Customer
had no trouble at all with the concept. In addition to identifying event/action pairs, system state at
the time of the event, and any necessary action data were also identified. Stick figures and named
ovals were not used. Sorry Ivar!

The scenario document had begun with analyses of the tender and tender response, producing a 9-
page table containing 41 requirements. After two days with the Customer this document expanded
into a 39-page table containing 79 requirements.

The benefits were obvious. The software functionality was now fully scoped and therefore a better
estimate of required effort could be made. Acceptance tests could now easily be constructed. The
Customer now realised the extent of the work being undertaken by the Software Improvements
Team and thus some prioritisation of requirements was quite acceptable.

The requirements were modelled using a real-time structured analysis approach, in line with
eVACS® being a very event and process driven system.

The model provided a clear picture of the operational scope of eVACS® as well as clear definitions
of data input and output. Areas of re-use and also areas where functionality could be reduced
without ill affect were easily identified. For example, there was obvious re-use of functionality
between the voting part of the system and the paper vote data entry part of the system. Also, a clear

Software Improvements © 2005 5

reduction in functionality within the data entry part of the system was gained by reducing the size of
paper vote batches from 500 down to 50.

Acceptance testing was enhanced with the model because data input and output ranges were well
defined.

The modelling proceeded incrementally with separation of the system into four components:
Election Setup, Voting, Data Entry, and Counting. Each of the component models was
incorporated into separate software requirements specifications. The final combined set of four
SRS documents consisted of 158 pages including, 34 data flow and/or state transition diagrams,
written process specifications, an extensive data dictionary and a requirements traceability matrix.

The model provided the basis for a more accurate estimate of size and effort. The new estimate of
size didn’t vary much from the previous one, but the effort estimate was lower.

The SRS documentation provided all that was necessary to construct a design.

Software Design
Decision or action Reason(s)

Construct architectural design of software. • Allow planning of coding effort.
• Provide a visualisation of the structure of the

software to all parties.
• Focus the planning and implementation of

integration and system testing.

Provide detailed design specification. • Give hired programmers an easy way to
understand what they are required to do.

• Form basis for unit tests.

The design came together relatively quickly, mainly because the team had worked closely together
and captured a very similar visualisation and understanding of the system.

The identified reductions in functionality and areas for re-use (mentioned earlier) were included in
the design so that programmers were not duplicating effort.

Each design module was specified using a standard format in pseudo-code with pre- and post-
conditions described wherever possible. Thus a programmer who had to code up the module was
presented with a contract for coding and testing.

The hired programmers (one of whom was very experienced) could not believe that they could be
productive within 4 hours of joining the Software Improvements Team.

The architectural part of the software design document (SDD) contained 31 pages including 10
module specifications, whilst the detailed part of the document (SDDD) contained 306 pages
including 47 diagrams and around 327 module specifications.

Software Improvements © 2005 6

Software Coding
Decision or action Reason(s)

Code according to SDD and SDDD
specifications.

• The design describes how the requirements
should be implemented.

• The design is also the plan for building the code.

Perform code reviews and inspections. • Ensure consistent coding practices.
• Sharing of knowledge and issues.

The main coding and testing effort took seven weeks of elapsed time. Less than planned. Review
meetings were held every other day and were intensive sessions to ensure that everyone was
progressing, cooperating, and sharing problems and solutions. Each coder was aware of each other
coder’s productivity and so work was distributed accordingly.

The code was audited, both before and after the election, for possible insecurities and any hidden
attempts to alter the outcome of the election. The auditor found no insecurities or hidden schemes
but (before the election) did expose nine faults. Five were regarded as serious enough to possibly
cause instabilities, but otherwise would not affect the outcome of the election result. Four faults
were regarded as minor or cosmetic.

Toward the completion of the coding phase the Customer informed the Team that the facility for the
sight-impaired ‘had to be’ included. The Team had not included the facility to date because there
had not been enough time. However it became a political must. To cut a long story short, the Team
and the Customer together implemented the sight-impaired facility. If there were no ownership on
the part of both parties then the cooperative effort would not have occurred.

There were 21,810 non-blank, non-comment source lines of ‘C’ code in the final eVACS®. The
source was distributed among 182 “.c” files together with 80 “.h” files.

Software Testing
Decision/action Reason(s)

Write acceptance test cases & procedures for
the customer in accordance with the SRS.

• The tight schedule.
• Ill-conceived tests from the customer.
• Shared ownership and expectation.

The well-structured design meant that unit and integration tests could be written, in accordance with
the design, as the coding progressed. The Customer reviewed the acceptance tests (some of which
were quite complex) and any errors were corrected.

The human side of the project
Most of the Software Improvements Team possessed information technology, computer science or
software engineering qualifications together with several years experience. They all possessed
strengths and weaknesses in their profession and these were acknowledged and accepted by all.
The Team was truly a group of professionals and without their wise planning and decision making
the project would almost certainly have failed.

Software Improvements © 2005 7

A true test of the professional nature of the Team was had with several very unfortunate and one
tragic episode during the course of the project. The project lead’s life-partner was hospitalised for
several weeks with an unknown liver disorder and the diagnosis was fatalistic. The wife of another
major member of the team fell in a car park and splintered both elbows, making it virtually
impossible for her to hold and feed their young child of 5 months. The elderly mother of the quality
assurance manager died and he had to go to the UK to make funeral arrangements and arrange for
his elderly father to be put into proper care. Another Software Improvements employee with three
young children lost her husband in tragic circumstances. My own mother died of cancer on
September 11. Through all this the Team remained a team.

Epilogue
The elapsed time of the project was 135 working days containing an overall effort of 334 person
days. The hardest-worked Software Improvements employee averaged 45 hours per week during
the project period. Contracted people were typically hired for a maximum number of hours within a
defined period and very rarely did more than an 8 hour day.

The effort distribution over the project was as follows:

• 11% - prototype.
• 27% - requirements (scenario analysis, modelling and design).
• 38% - coding, unit, integration and system testing.
• 24% - acceptance testing and deployment.

The implemented eVACS® did what it was required to do at the October 2001 ACT Legislative
Assembly elections. By the time the full count had been completed the ACT Electoral Commission
had proved that counting by hand was too inaccurate, especially for close-run results – as occurred
in this election.

No voter who used the system complained, even when the barcodes used to start and finish a voting
session sometimes had to be swiped many times before the barcode reader accepted the input.
Voters often went out of their way to vote electronically and then often had to line up in long
queues.

eVACS® went slightly over-budget, but Software Improvements does have the IP.

Since project completion the ACT Electoral Commission has promoted both eVACS® and
Software Improvements several times. The Commission has also contracted Software
Improvements to undertake modifications to eVACS® . The planning and documentation
processes followed during the development of eVACS® were necessary inputs to the enhancements
and have been continued for the enhancements.

Conclusion
How you address the common reasons for success and failure (as reported by the Standish Group)
seems very important. It’s not appropriate to be aware of these various reasons and then use ill
thought-out actions to try and support success or counteract failure. Software development
companies and teams need to possess software engineering knowledge and capability. If the team

Software Improvements © 2005 8

cannot put a plan together, and/or doesn’t understand how to clarify or elicit requirements, and/or
doesn’t know how to construct models or designs, and/or doesn’t know how to plan and construct
tests, and/or doesn’t know how to manage a project then they are not going to be able to make
reasonable decisions that positively promote success.

The ACT Electoral Commission has received a well defined, well documented, tested, and
maintainable system. I’d hate to think what might have been produced if the Software
Improvements Team had undertaken the usual panic approach of “code, code, code for there isn’t
enough time to do that other stuff”.

In addition to the Standish Group of listed reasons for success, I believe that the following are also
very important:

• Make sure that the customer’s objectives are always being met.
• Form a close professional, relationship with the customer.
• Make sure the team is a team.
• Construct clear specifications at every phase of the project.

References
1. ACT election system: http://www.elections.act.gov.au/Elecvote.html
2. Hare-Clark counting system: http://www.elections.act.gov.au/hare.html
3. Post-project report: (include correct website details and link).
4. Standish report: http://www.standishgroup.com/sample_research/chaos_1994_1.php

Note
This article is an updated version of a paper published in the December 2002 edition of “software”
the journal of Software Engineering Australia, and republished with modifications by the Australian
Computer Society in the Best of Information Age, June 2004.

Author
Clive Boughton studied Physics at RMIT and later gained his PhD in experimental physics from the
Australian National University. He has been involved in industrial and defence applications of
software engineering over the last 15 years. He has been providing software engineering training
and consulting for over 10 years, and more recently introduced the Bachelor degree and then the
Master degree in Software Engineering at the Australian National University. Clive Boughton is a
founding Director of Software Improvements Pty Ltd.

